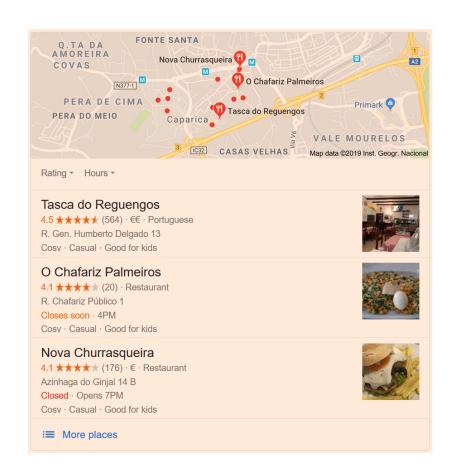
Information Retrieval

Course presentation

João Magalhães

Information retrieval

Question Answering


Move to mobile favors a move to **speech** which favors **natural language information search**

 Will we move to a time when over half of searches are spoken?

Named entities

Conversational Search

- Alexa, Siri, Google Assistant...
- CS methods need to track the evolution of the information need in the conversation;
- It needs to identify salient information needed for the current turn in the conversation;
- Retrieval methods are required to retrieve the relevant information from a knowledge base (e.g. Wikipedia).

U: Tell me about the **Neverending Story film**.

A: ...

U: What is it about?

A: ...

U: Who was the author and when it was published?

A: ...

U: Who are the main characters?

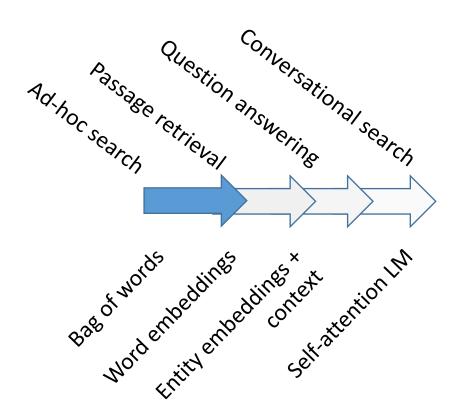
A: ...

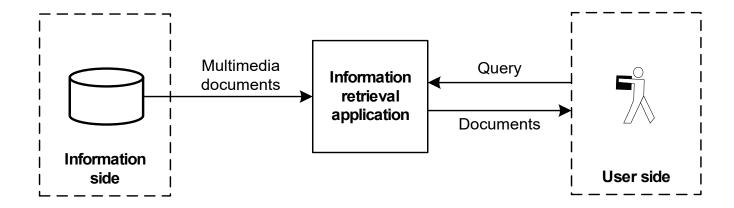
U: Did the horse horse Artax really die?

A: ...

Recommendation methods

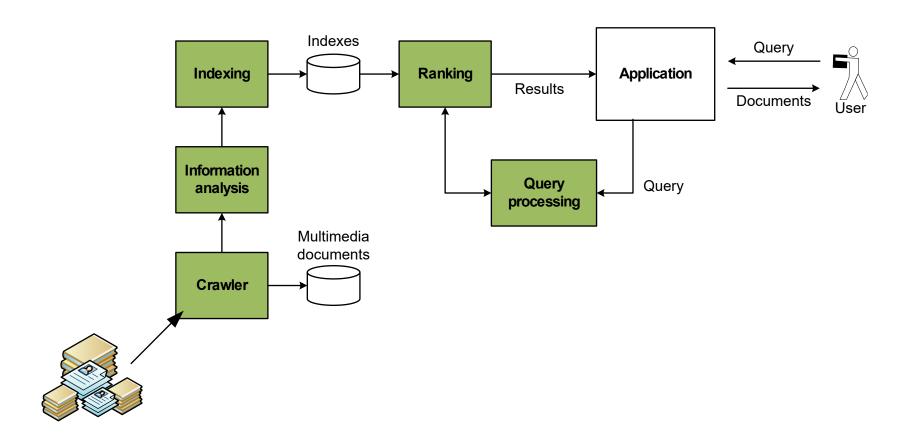
- Recommender systems aim at suggesting new products to users based on their preferences
- Recommendations can be computed from two different type of inputs:
 - Product characteristics
 - Collective user ratings




Search in 2025?

What will people do in 2025?

- Type key words into a search box?
- Ask questions to their computer in natural language?
- Use social or "human powered" search?



Relevance vs similarity

What is the best algorithm to compute the relevance of documents for a given user information need?

Putting all together...

The tasks of a search application

- <u>Collect</u> data for storage
 - Crawler
- Analyse collected data and compute the <u>relevant information</u>
 - Information analysis
- Store data in an efficient manner
 - Indexing
- Process <u>user</u> information needs
 - Querying
- Find the documents that best <u>match</u> the user information need
 - Ranking

Schedule

Information Retrieval and Natural Language Processing				
Week	#	Lecture	In-class labs	
16/set/20		1 Introduction		
23/set/20		2 Text processing, NGRAMS, cosine distance		
30/set/20		3 Language models	Selecting answers	
07/out/20		4 Evaluation		
14/out/20		5 Classification tasks: sentiment, category, spa		
21/out/20		6 Pseudo relevance models		
28/out/20		7 Learning to rank		
04/nov/20		8 Word embeddings	Re-ranking answers	
11/nov/20		9 Information extraction		
18/nov/20	<i>'</i>	10 Question answering		
25/nov/20		11 Conversational search		
02/dez/20		12 Recommendation and personalization	Conversational context	
09/dez/20 16/dez/20		Project support		

References

Slides and articles provided during classes.

Books:

C. D. Manning, P. Raghavan and H. Schütze, "Introduction to Information Retrieval", Cambridge University Press, 2008.

https://nlp.stanford.edu/IR-book/information-retrieval-book.html

3rd edn. draft chapters!
Speech and
Language
Processing
Dan Jurafsky and James H.
Martin

Dan Jurafsky and James H. Martin, Speech and Language Processing (3rd ed. draft)

https://web.stanford.edu/~jurafsky/slp3/

Course grading

• The course has two mandatory components:

• Project (groups of 3 students): 60% (minimum grade > 9.0)

(three submissions, on the 20th of each month)

Theoretical part (1 test or 1 exam):
 40% (minimum grade > 9.0)

Theory test/exam:

• Test: January 4 to 16

• Exam: To be defined

- Additional rules:
 - You may use one sided A4 sheet <u>handwritten by you</u> with your notes.
 - It must be handed in at the end of the test.

Project: Conversational search

- Track the evolution of the information need in the conversation;
- Identify salient information needed for the current turn in the conversation;
- Retrieval methods are required to retrieve the relevant information from a knowledge base (e.g. Wikipedia).
- A search end-point will be provided with the Wikipedia corpus index.

Project phases

Phase 1: Selecting answers (20%)

(20 October)

- Searching with Language Model
- Data inspection of conversational search sessions
- Evaluation
- Phase 2: Re-Ranking answers (20%)

(20 November)

- Learning to rank
- Neural Language Models
- Phase 3: Conversational context (20%)

(20 December)

Modeling conversational context

Summary

- Context
- Objectives and plan
- Grading
- Labs